Identification of Nonlinear Additive Autoregressive Mod- els

نویسندگان

  • Jianhua Z. Huang
  • Lijian Yang
چکیده

We propose a lag selection method for nonlinear additive autoregressive models based on spline estimation and the BIC criterion. The additive structure of the autoregression function is used to overcome the “curse of dimensionality”, while the spline estimators effectively take into account such a structure in estimation. A stepwise procedure is suggested to implement the proposed method. Comprehensive Monte Carlo study demonstrates good performance of the proposed method and substantial computational advantage over existing local polynomial based methods. Consistency of the BIC based lag selection method is established under the assumption that the observations are from a stochastic process that is strictly stationary and strongly mixing, which provides the first theoretical result of this kind for spline smoothing of weakly dependent data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Controller Design Based-on Aerodynamic Load Simulator Identification Driven by PMSM for Hardware-in-the-Loop Simulations

Aerodynamic load simulators generate the required time varying load to test the actuator’s performance in the laboratory. Electric Load Simulator (ELS) as one of variety of the dynamic load simulators should follows the rotation of the Under Test Actuator (UTA) and applies the desired torque to UTA’s rotor at the same time. In such a situation, a very large torque is imposed to the ELS from the...

متن کامل

Boosting nonlinear additive autoregressive time series

Within the last years several methods for the analysis of nonlinear autoregressive time series have been proposed. As in linear autoregressive models main problems are model identification, estimation and prediction. A boosting method is proposed that performs model identification and estimation simultaneously within the framework of nonlinear autoregressive time series. The method allows to se...

متن کامل

A Unified Wavelet-Based Modelling Framework for Nonlinear System Identification: the WANARX Model Structure

A new unified modelling framework based on the superposition of additive submodels, functional components, and wavelet decompositions is proposed for nonlinear system identification. A nonlinear model, which is often represented using a multivariate nonlinear function, is initially decomposed into a number of functional components via the well known analysis of variance (ANOVA) expression, whic...

متن کامل

Single-Index Additive Vector Autoregressive Time Series Models

We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the or...

متن کامل

Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003